Chapter 2.13
WATERFRONT STRUCTURES AND MARINA CODE

Sections:
2.13.010 Title.
2.13.020 Scope.
2.13.030 Tacoma Fire Code.
2.13.040 Existing installations.
2.13.050 Definitions.
2.13.060 Waterfront structures.
2.13.070 Dry boat storage.
2.13.080 Marinas.

2.13.010 Title.
Chapter 2.13 of the TMC shall be known as the Waterfront Structures and Marina Code (“WFS&MC”).

2.13.020 Scope.
This chapter shall pertain to and regulate the fire protection and construction of waterfront structures and marinas, as defined herein, which shall be subject to all requirements of the codes and ordinances of the City of Tacoma relating to other structures, including but not limited to the Building Code, Residential Code, Mechanical Code, Fire Code, Plumbing Code, Minimum Building and Structures Code, Electrical Code, Energy Code, Land Use Regulatory Code, and the Shoreline Management Act as officially adopted by the City of Tacoma, except as may be specifically limited, modified, or amended herein.

Exception: This Chapter shall not apply to existing waterfront structures where the International Residential Code is applicable, or classified as Group R, Division 3 occupancies, as defined in the International Building Code.

2.13.030 Tacoma Fire Code.
The Tacoma Fire Code requirements pertaining to marinas are specifically included in the City of Tacoma’s Water Front Structures and Marina Code by reference.

2.13.040 Existing installations.
Except as specifically provided within this chapter, facilities regulated by this chapter, and in existence at the time of the adoption of this chapter may have their existing use or occupancy continued, subject to the provisions of the building and fire codes, if such occupancy was an approved use at the time of the adoption of this chapter on March 31, 1992.

2.13.050 Definitions.
The following terms used in the succeeding sections of this chapter relating to waterfront structures and marinas shall have the meanings herein indicated. Where specific terms are not defined within this section, their meaning shall be as defined using the International Building Code definitions as adopted and amended by TMC Chapter 2.02, or the International Fire Code as adopted and amended by TMC Chapter 3.02.

A. Definitions:
Approach Way: A structure used to gain access to a pier or wharf, but not used to moor vessels.

B. Definitions:
Beam: Maximum overall width of a vessel.
Berth: A place where a vessel may be secured to a fixed or floating structure and left unattended.
Boat House: A boat house shall be a specific type of vessel designed to be moored to a main float system to enclose and protect another vessel or vessels from the elements. The construction of boat houses shall be regulated by this ordinance and the building and fire codes.

Building Code: The International Building, the International Residential, and the International Existing Building Codes, published by the International Code Council as adopted and amended by Chapter 2.02 of the TMC.

Building Official: The individual authorized by the City of Tacoma, charged with the administration and enforcement of the Building Code, or his or her duly authorized representatives.
C. Definitions:
Corrosion Resistant Steel: For the purposes of this ordinance, unless specifically stated otherwise, corrosion resistant steel shall mean steel which is galvanized, painted or otherwise coated to retard corrosion, or any uncoated steel alloy which is defined by The American Society for Testing and Materials (ASTM) specifications as corrosion resistant.

D. Definitions
Datum: is the zero point established by the City of Tacoma for measuring elevations. NOAA datum and the City of Tacoma Datum as of July 1, 1990 are approximately interchangeable. (Tacoma Datum and NOAA Datum have a zero point which would correspond approximately with +14.03 feet according to the old City of Tacoma Datum. (Datum published prior to July 1, 1990.)

Deck: That element of a waterfront structure which provides the lowest floor level or platform for use, under which occur only the structural support system for the structure, and no usable space.

Dry Boat Storage: A building, which is either open or subdivided into stalls and is used primarily for the dry storage of vessels, or a building for the dry storage of vessels in racks.

E. Definitions:

F. Definitions:

G. Definitions:

H. Definitions:

I. Definitions:

J. Definitions:

K. Definitions:

L. Definitions:

M. Definitions:
Marina: Any portion of the ocean or inland water, either naturally or artificially protected, for the mooring, servicing or safety of vessels and shall include artificially protected works, the public or private lands ashore, and structures or facilities provided within the enclosed body of water and ashore for the mooring or servicing of vessels or the servicing of their crews or passengers.

Mean High Water: 5.00 feet City of Tacoma or NOAA Datum. (See the definition of Datum).

Mean Lower Low Water: Minus 6.33 feet City of Tacoma or NOAA Datum. (See the definition of Datum).

Mean Sea Level: Mean sea level is the zero point for tide measurement, and is 0.58 feet City of Tacoma or NOAA Datum established by the National Oceanic and Atmospheric Administration (NOAA). (See the definition of Datum).

Moor: The act of securing a vessel into a berth at a pier, wharf, or float system.

N. Definitions:

NOAA: National Oceanic and Atmospheric Administration.

Nominal Size (Lumber): The commercial size designation of width and depth, in standard sawn lumber and glue-laminated lumber grades; somewhat larger than the standard net size of dressed lumber, in accordance with DOC PS 20 for sawn lumber and with the AF&PA NDS for structural glued laminated lumber.

O. Definitions:

P. Definitions:

Pier: A fixed waterfront structure, usually of greater length projecting from the shore than the width, constructed of timber, stone, concrete, steel, or other material, having a deck and projecting from the shore over waters subject to the Shoreline Management Act so that vessels may be moored alongside for loading and unloading or for storage or repairs. For the purpose of this code, where the word "pier" is used it shall be construed as including "wharf". (Note: This definition supersedes the definition set forth in IFC Chapter 45).

PSF: Pounds per square-foot

Q. Definitions:

R. Definitions:

S. Definitions:

Substructure: That portion of a waterfront structure below and including the deck.

1. Combustible Substructures. A substructure which does not qualify as either a fire resistive substructure or a noncombustible substructure.

2. Fire Resistive Substructures. A noncombustible substructure with all elements, including the deck, having a four hour fire-resistive rating, except that wood piles or wood cribwork or steel piles, which are not fire rated, may be used if they do not extend above Mean Lower Low Water.

3. Noncombustible Substructures. A noncombustible substructure with only the deck having a four hour fire-resistive rating, except that wood piles or wood crib work may be used if they do not extend above Mean Lower Low Water.

Superstructure: That portion of a waterfront structure constructed above the deck.

T. Definitions:

U. Definitions:

V. Definitions:

Vessel: A motorized and/or wind powered watercraft, other than seaplanes on the water, used or capable of being used as a means of transportation. Non-transportation vessels, such as houseboats and boathouses, are included in this definition. (Note: This definition supersedes the definition set forth in IFC Chapter 45).

See the definition of Boat House.

W. Definitions:
Ordinance No.16-0456
July 1, 2016

Waterfront Structure: A structure or improvement which at any time is over water subject to the Shoreline Management Act, and is constructed with a deck supported on piles or other types of open structural framing, where the under-deck area facing the water remains unenclosed except for fender systems.

Wharf: A fixed waterfront structure, usually of greater width along the shoreline than the length projecting from the shore, constructed of timber, stone, concrete, steel, or other material, having a deck built over, along and parallel to waters subject to the Shoreline Management Act so that vessels may be moored alongside for loading and unloading, or for storage or repairs. For the purpose of this code, where the word "wharf" is used it shall be construed as including "pier". (Note: This definition supersedes the definition set forth in IFC Chapter 45).

X. Definitions:
Y. Definitions:
Z. Definitions:
2.13.060 Waterfront structures.

a. General.

All piers, wharves and waterfront structures as herein defined shall comply and conform to all of the requirements set forth herein.

b. Protection Against Mechanical Damage.

Waterfront structures shall be designed for impact loads from vessels and floating debris. Regardless of the type of construction of the substructure, fender systems may be built of wood members with a minimum nominal dimension of four inches and a minimum nominal area of forty-eight square inches, provided the outside face of said fender system is located no more than three feet inside the outermost edge of the deck.

c. Combustible Substructures.

1. Piles and Stiffening Members.

The piling and cross bracing of those portions of the substructure which are over water at any time shall be so designed to allow the passage of a six-foot wide boat for access to all points for the purpose of inspection, maintenance or repair.

2. Pier Decks and Supports.

A. Pile caps shall consist of sawed or glue-laminated timber not less than eight-inch nominal minimum dimension and ninety-six square inches nominal cross-sectional area.

B. Deck framing members shall be not less than six-inch nominal minimum dimension and seventy-two square inches nominal cross-sectional area.

C. Deck planking on the deck framing shall be not less than four inches in nominal thickness and on this shall be laid a wearing surface of two-inch nominal wood sheathing, or a layer of concrete or asphalt, or other material of equivalent durability. The sheathing and deck planks shall be laid at right angles, except that in the driveways the sheathing may be laid diagonally.

Exception Pier decks without superstructures may have decks of wood decking or planking of not less than three inches nominal thickness.

D. Pier decks of composite laminated wood and concrete construction shall be acceptable, provided that the wood decking or planking used shall be not less than two inches in nominal thickness and shall be pressure preservative treated in accordance with the Building Code.

E. Piers and walkways which are ten feet or less in width may be constructed with caps and girders which have a minimum nominal width and depth of six-inches. Beams and other members shall have a minimum nominal width of three inches. Wood decking or planking may have a nominal thickness of two inches; and bracing may have a minimum nominal dimension of two inches.

3. Automatic Fire Sprinkling of Combustible Substructures.

A. General. All combustible substructures shall be provided with a complete automatic fire sprinkler system (NFPA 13), in accordance with the IBC and IFC provisions, in the under-deck areas.

B. Standards. Installation of sprinkler equipment shall be in accordance with the Building Code, Fire Code, and the Fire Code Standards. In those parts of waterfront structures where automatic fire sprinkler systems are subject to damage by floating debris, such as beneath depressed sections of pier decks, deviations from the strict application of the standards will be permitted and alternative methods of protection may be required. Where damage to sprinkler equipment by floating objects may occur, adequate provision shall be made to prevent such damage.

C. Additional Provisions. In addition to the standards referred to in subsection B hereof, the following provisions shall apply:

i. Sprinkler systems, including fittings and hangers, used in under-deck areas shall be protected from corrosion in accordance with NFPA Standards for the Construction and Fire Protection of Marine Terminals, Piers and Wharves, current edition.

ii. Water supply mains on substructures without superstructures shall be installed in under-deck space. If it is inadvisable to install mains in the under-deck space, they may be installed in the superstructure or on the deck of the substructure, with approval from the Building and Fire Officials.

iii. Automatic fire sprinkler systems and supply piping subject to freezing shall be installed as dry pipe systems.
iv. Automatic fire sprinkler systems installed in waterfront structures shall be maintained in accordance with the Fire Code.

4. Subdivision of Combustible Substructures.

All substructures of combustible construction shall have the under-deck area subdivided as follows:

A. Fire Walls. Fire walls shall be required in combustible substructures at intervals not to exceed 450 feet in each direction. Fire walls shall also be provided at each location a fire wall occurs in a superstructure located on the substructure and shall constitute a continuation of the fire walls in the superstructure. Substructure fire walls shall be of reinforced concrete having a fire resistance of at least four hours, except that fire walls made of other approved noncombustible materials may be used, provided they are equivalent in stability and have an equivalent fire resistance. Walls shall be free of holes and shall extend from the deck down to Mean Lower Low Water. Where aprons or platforms are built along the sides of the waterfront structure, fire walls shall extend to the outside edges of such aprons or platforms.

B. Fire Stops. Spacing between fire walls and fire stops or between fire stops shall not exceed 150 feet. Fire stops shall fit tightly up against the deck and around any structural members or pipes that pass through the fire stop so that an effective barrier to fire and draft will be maintained. Fire stops shall be constructed of wood planking built up to a thickness of six inches and securely fastened to the supporting structure, or they may be of other construction approved by the Building Official. Fire stops shall extend from the deck down to Mean Lower Low Water. Where aprons or platforms are built along the sides of the waterfront structure, fire stops shall extend to the outside edges of such aprons or platforms.

d. Fire Flow Required.

A water supply for fire flow shall be provided in accordance with the Fire Code.

e. Water Supply and Design of System.

Water may be supplied from the municipal water system or any other water supply meeting the approval of the Fire Code Official. The minimum residual water pressure shall be 20 psi at all fire hydrants. Private water systems shall be designed and installed in accordance with the applicable requirements of referenced standards NFPA 24, Standard for the Installation of Private Fire Service Mains and their Appurtenances.

f. Superstructures.

1. General.

Superstructures shall comply with all the provisions of the Building and Fire Codes. Superstructures which are required by the provisions of the Building Code to be either type IA or type IB construction shall be constructed on fire-resistive substructures. Superstructures which are required by provisions of Building Code to be either IIA or IIB construction shall be constructed on noncombustible substructures.

All superstructures shall be provided with an automatic fire sprinkler system complying with the provisions of the Building Code, and the Fire Code. Area and height limits for superstructures may be increased as permitted by the Building Code for automatic fire sprinkler systems.

Exception: Automatic fire sprinkler systems need not be installed in superstructures constructed on noncombustible substructures as defined herein, provided that all of the following conditions are met:

i. The aggregate area of all superstructures on the substructure does not exceed 1,500 square feet, and

ii. The aggregate occupant load of the superstructures, as calculated in accordance with the provisions of the Building Code, does not exceed fifteen, and

iii. The occupancy classification of the superstructures on the substructure is Group B, Group F, Division 2 or Group S, Division 2 occupancies as defined in the Building Code.
Ordinance No.16-0456
July 1, 2016

2.13.080 Marinas.

a. General:
Marinas, because of their character, present unique problems in providing access for fire-fighting purposes, for providing water supply, and for providing exiting. In order to mitigate these problems all Marinas shall conform to the provisions of this section and the Fire Code.

b. Float System Layout.
1. Water Access Aisles:

A. Where vessels are moored to a main float system on either side of the maneuvering aisle such that the berths are not parallel to the maneuvering aisle, the clear distance between the limit lines for obstructions, measured perpendicular to the maneuvering aisle, shall be a minimum of 1.25 times the length of the longest vessel served but not less than forty (40) feet.

Vessels in berths between finger floats may extend a maximum of five (5) feet beyond the ends of the finger floats into the access aisle, thereby establishing the limit line for obstructions. The extension into the access aisle shall be measured to the furthest extension of the vessel which shall include but not be limited to bowsprits, overhangs, swimming platforms and dinghies.

Where vessels are housed in boat houses, the boat houses may extend to the limit line for obstructions. The maneuvering aisle shall be established by assuming a center line between or along the rows of boat houses. The limit lines for obstructions shall be established at points on both sides of the assumed center line of not less than five-eighths (5/8) of the longest boat house along the aisle, but not less than twenty feet. The centerline shall be relatively straight down the aisle length, with no changes of direction by less than a 40 foot radius, except at the ends of aisles where additional maneuvering room is provided. Where vessels are housed in boat houses, and the water access aisles exceed 300 feet in length the limit lines for obstructions shall be not less than 40 feet on each side of the assumed center line for the entire length of the aisle.

Exception: Where water access aisles exceed 300 feet, the Fire Chief may allow narrower water access aisles where site conditions require or permit narrower water access aisles, and alternate fireboat access is possible.

B. Where vessels are moored parallel to and on one side of a water access aisle, the water access aisle widths shall be not less than forty (40) feet, plus 1.25 times the beam of the largest vessel expected to be moored at the facility. If vessels are moored parallel to and on both sides of an access aisle, the access aisle shall be not less than forty (40) feet, plus 2.5 times the beam of the largest vessel expected to be moored at the facility.

C. Water access routes and entries for vessels to a marina facility, shall be not less than forty (40) feet in width.

2. Fire Department Access Passages:
Access passages along uncovered finger floats, through covered boat storage sheds or between boat houses shall be provided between the water access aisles and the main floats, at intervals not to exceed two-hundred (200) feet. When vessels are moored on both sides of main floats the access passages shall be staggered by one-hundred (100) feet from one side to the other. Access Passages shall extend to the limit line for obstructions.

Fire Department access passages shall have a minimum unobstructed width of forty-eight (48) inches. Toe rails or curbs a minimum of five (5) inches in height shall be provided along both sides of access passages. The clear distance between the toe rails shall be not less than forty-one (41) inches.

3. Main Float Length:
No portion of a main float shall exceed one-thousand (1000) feet in distance from the bottom of a gangway providing access to the shore or to a waterfront structure. The position of the bottom of the gangway shall be measured at Mean High Water (+5.00 Feet NOAA Datum).

For fuel dispensers on a float system see the Fire Code provisions for marine service stations.

4. Main Float Widths: Main floats shall provide an unobstructed pathway with minimum dimensions of forty-four (44) inches in width by seven (7) feet in height, which shall be maintained the length of the main float at all times.

5. Finger Float Widths:
Finger floats shall be not less than thirty-six (36) inches in width.

6. Gangway Width:
Ordinance No.16-0456
July 1, 2016

Gangways shall have a minimum clear width of forty-four (44) inches. Handrails may extend a maximum of 3.5 inches into the required width on each side.

7. Gangway Slope:
Gangways which are ramps shall not slope more than one (1) vertical to two and one-half (2.5) horizontal when tide is at Mean Lower Low Water (-6.33 Feet NOAA Datum). Cleats and a nonslip surface shall be provided on ramp gangways. Gangways constructed with self-leveling stairs shall provide treads runs of not less than eleven (11) inches nor more than eighteen (18) inches, and risers of not less than four (4) inches nor more than seven (7) inches. An approved nonslip surface shall be applied to all stair treads.

8. Gangway Handrails and Guardrails:
Guardrails shall be provided on both sides of gangways. Guardrails shall be a minimum of forty-two (42) inches in height measured perpendicular to the slope of the gangway surface. Guardrails shall be provided with intermediate bars or a pattern spaced to prevent a sphere four (4) inches in diameter from passing through. Handrails shall be provided on both sides of the gangway and shall be placed thirty-four (34) inches measured perpendicular to the slope of the gangway surface. The grip portion of the handrail shall be of a graspable shape not less than one and one-half (1.5) inches nor more than two (2) inches in diameter, and there shall be a space of one and one-half (1.5) inches between the backside of the handrail and the guardrail.

c. Covered Moorage Size and Spacing Limitations
Covered moorage shall be considered to be of two types, enclosed and open. Enclosed covered moorage are boat houses which are enclosed on three or more sides. Open covered moorage are roof structures which are generally supported on posts or frames, and which are open on two or more sides. The area of covered moorages shall be subject to the limitations set forth in the following table:

<table>
<thead>
<tr>
<th>Building Code Type of Construction</th>
<th>Allowable Single Boat House Area</th>
<th>Allowable Area for Boat Covers and Area of Combined Boat Houses</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB</td>
<td>3000 sq-ft</td>
<td>9000 sq-ft</td>
</tr>
<tr>
<td>IIB</td>
<td>3000 sq-ft</td>
<td>17,500 sq-ft</td>
</tr>
</tbody>
</table>

Footnotes:
1. Sidewalls for all new boat houses, for all new enclosed boat covers and all boat houses relocated from other locations outside the marina in question, shall be sheathed with corrosion resistant steel. Aluminum, wood and plastic siding materials shall be prohibited.
2. Provide smoke venting for all new structures and for all structures relocated from other locations outside of the marina in question in accordance with the Fire Code.
3. Clearances for calculated area increases shall be in accordance with the building code.
4. Unroofed areas to separate adjacent covered moorage areas on the same float system shall be a minimum of sixteen (16) feet or 33 percent of the longest finger float whichever is greater. Unroofed areas may be used for moorage.
5. The areas listed in the table, including those for single boat houses may be tripled if the boat house or the covered boat moorages are provided throughout with an automatic fire sprinkler system. The area of individual boat houses may be tripled if the boat house alone is fire sprinklered, but no area increase is permitted for the combined boat house areas unless all the boat houses and open boat covers are fire sprinklered.
6. Draft curtains shall be provided in accordance with the Fire Code; however, if draft stops are constructed of sheet metal, the sheet metal shall be steel, with rust protection.
7. The areas of open boat covers and the combined area of boat houses may be increased for yards or open spaces in accordance with the provisions of the Building Code. The area of individual boat houses shall not be increased for yards or open spaces.

d. Structural Design Criteria
A. Float systems including the finger floats shall be designed to support all dead loads plus a superimposed live load of twenty (20) pounds per square-foot over their entire walking surface.
B. Covers or boat houses supported by a float system shall be designed to support all dead loads plus a snow load of twenty (20) pounds per square-foot. Float systems supporting covers or boat houses shall be designed to support the dead loads and snow loads contributed by the covers or boat houses plus the live and dead loads prescribed in item A above. Snow sliding off upper roofs onto floats or lower roofs shall be taken into consideration in the design.

C. Float systems, including the finger floats shall be designed to withstand a minimum concentrated load at any location on the walking surfaces of five-hundred (500) pounds, without causing any of the elements of the float system to tilt more than six (6) degrees from level (10.5% Slope). The concentrated load is to be located at any thirty (30) by thirty (30) inch square on the walking surface and shall be applied simultaneously with the uniform load. Snow loading on covers or boat houses may be reduced to ten (10) pounds per square-foot while applying the concentrated loads.

D. Gangways shall be designed to support a minimum of fifty (50) pounds per square-foot live load over their horizontal projected area at Mean High Water, along with all dead loads. Gangways shall also be designed to support a concentrated load of one-thousand pounds (1000) pounds on any thirty (30) by thirty (30) inch square on the gangway; however the concentrated load need not be applied simultaneously with the required uniform live load. The reaction of the gangway under full load shall not cause the main float to tilt out of level by more than six (6) degrees (10.5% slope).

2. Wind Design Loads

The float systems and their anchorages shall be designed to withstand wind as prescribed in the building code; however the design wind load need not exceed twenty (20) pounds per square-foot. The wind load shall be applied to the projected areas of the covers, boat houses and moored vessels. It shall be assumed that all berths are occupied. Covers and boat house structures shall be designed to withstand wind uplift loads as prescribed in the Building Code.

3. Stresses Induced by Waves

A. Vertical Loads: Float systems shall be designed to carry all dead loads, plus 20 PSF live load on all walking surfaces, plus 20 PSF snow load on all covers supported by the float system, over a span of not less than ten (10) feet. The float system shall be able to carry these loads over the design spans in both the transverse and longitudinal directions. The design spans shall be located along the floats system for analysis to produce the greatest stresses along the float system.

B. Lateral Loads: In addition to the wind loads, float systems and their anchorage systems shall be designed to resist lateral loads induced by wave action. Unless supported by a dynamic analysis, those float systems and their anchorage systems protected by breakwaters or otherwise sheltered from wind and waves or are subject to waves with heights of two (2) feet or less, shall be designed to withstand lateral loads of not less than one-half (1/2) gravity. Those float systems exposed to open water, or subject to waves in excess of two (2) feet in height shall be designed to withstand lateral loads of not less than full gravity. The calculation of lateral forces shall be based on the total dead load of the float system and all structures supported by the float system.

4. Special Loads

Guardrail and Handrail Assemblies: Guardrail and Handrail assemblies shall be designed to withstand a load of not less than twenty (20) pounds per lineal foot applied horizontally at the top most rail of the guardrail and handrail assembly.

5. Special Considerations

Provision shall be made to prevent individual boat houses from "hammering" into each other.

e. Construction Materials:

1. Flotation Materials:

A. Timber logs and other wood flotation shall not be used within float systems in Marinas.

Exception: Wood flotation may be approved by the Building Official when unusual circumstances warrant its use.

B. Foam flotation shall meet the following minimum specifications:

i. Physical Properties:

Density: Not less than 0.9 pounds per cubic foot. (ASTM D-1622)
Compressive Strength: Not less than 10 psi. (ASTM D-1621)
Flexural Strength: Not less than 25 psi ultimate strength. (ASTM C-203)
Moisture Absorption: The maximum water absorption shall be not greater than four (4) percent when tested by the immersion method. (ASTM C-272)

ii. Chemical Properties:

Hydrocarbon Resistance: Foam flotation to be used within flotation systems shall be resistant to the chemical reaction with hydrocarbon fuels and lubricants or protected by an approved encapsulation system.

iii. Protection from Mechanical Damage:

Foam flotation systems shall be protected from direct contact by vessels, floating debris and foot traffic by wood or concrete decking and wood or concrete fender or skirt systems.

C. Steel or metal flotation systems are not permitted in salt water applications but may be used in fresh water marinas.

Exception: The Building Official may permit steel or metal flotation systems in applications which are temporary. Approvals shall be limited to a maximum of one-year. An additional year may be approved if, on inspection after the first year, it is determined that the flotation system is in good condition.

D. Concrete pontoon floats shall be constructed using an approved concrete design mix of not less than six (6) sacks of cement per cubic yard, and a 28 day ultimate strength of not less than 4000 pounds per square inch. The concrete mix shall meet ACI specifications for use within a salt water environment and to provide corrosion resistance for the structural, temperature and shrinkage reinforcement within the concrete pontoons. Concrete pontoon reinforcing shall be epoxy coated. The interior cavity of the concrete pontoons shall be filled with foam flotation meeting the requirements of this code.

E. Fueling Floats: All floats used for fuel docks shall have a Portland cement concrete or other approved nonabsorbent surface impervious to fuel spillage.

2. Decking, Fender, and Float Encasement Materials:

Decking, fender and float encasement materials shall be sized to withstand the design loads, both vertical and horizontal as prescribed by this code. Materials shall be compatible with the marine environment.

Wood materials shall be pressure treated meeting AWPA standards for the species, product, preservative, and end use.

Concrete materials shall have a minimum compressive stress of 4000 psi at 28 days. Concrete mixes shall have a minimum of six (6) sacks of cement per cubic yard.

Metal materials shall be galvanized, painted or otherwise coated to retard corrosion, and if necessary cathodically protected.

3. Boat House and Boat Cover Framing:

Boat house and boat cover framing shall be sized to meet the design criteria prescribed in this code, for vertical, horizontal and uplift loads.

Materials shall meet the requirements for decking, fenders and float encasement as prescribed in item No. 2 above for a minimum distance of three (3) feet above the float system. From three (3) feet above the float system, framing materials shall comply with the Building Code.

4. Boat House and Boat Shed Roof and Wall Coverings:

Boat house and boat shed roof and wall coverings shall be galvanized or painted steel. Approved wood-based structural panels manufactured with exterior glue may be used in boat houses, under the steel roof or wall covering, to provide vertical and/or lateral strength. Such structural panels shall not be directly exposed to the weather, and shall not be used in locations which become submerged or are subject to water splash.

Exception: Approved wood-based structural panels manufactured with exterior glue may be used in open boat covers for the construction of gusset plates.

f. Draft Curtains:

Draft curtains shall be provided in accordance with the Fire Code; however, if draft stops are constructed of sheet metal, the sheet metal shall be steel, with rust protection.

* * *